By Topic

Maximizing the functional lifetime of sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Giridhar, A. ; Coordinated Sci. Lab., Illinois Univ., Urbana, IL, USA ; Kumar, P.R.

The functional lifetime of a sensor network is defined as the maximum number of times a certain data collection function or task can be carried out without any node running out of energy. The specific task considered in this paper is that of communicating a specified quantity of information from each sensor to a collector node. The problem of finding the communication scheme which maximizes functional lifetime can be formulated as a linear program, under "fluid-like" assumptions on information bits. This paper focuses on analytically solving the linear program for some simple regular network topologies. The two topologies considered are a regular linear array, and a regular two-dimensional network. In the linear case, an upper bound on functional lifetime is derived, as a function of the initial energies and quantities of data held by the sensors. Under some assumptions on the relative amounts of the energies and data, this upper bound is shown to be achievable, and the exact form of the optimal communication strategy is derived. For the regular planar network, upper and lower bounds on functional lifetime, differing only by a constant factor, are obtained. Finally, it is shown that the simple collection scheme of transmitting only to nearest neighbors, yields a nearly optimal lifetime in a scaling sense.

Published in:

Information Processing in Sensor Networks, 2005. IPSN 2005. Fourth International Symposium on

Date of Conference:

15 April 2005