By Topic

Microwave filters with improved stopband based on sub-wavelength resonators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

12 Author(s)
J. Garcia-Garcia ; Dept. d'Enginyeria Electronica, Barcelona Univ., Spain ; F. Martin ; F. Falcone ; J. Bonache
more authors

The main aim of this paper is to demonstrate the potentiality of sub-wavelength resonators, namely, split-ring resonators, complementary split-ring resonators, and related structures to the suppression of undesired spurious bands in microwave filters, a key aspect to improve their rejection bandwidths. The main relevant characteristics of the cited resonators are their dimensions (which can be much smaller than signal wavelength at resonance) and their high-Q factor. This allows us to design stopband structures with significant rejection levels, few stages, and small dimensions, which can be integrated within the filter active region. By this means, no extra area is added to the device, while the passband of interest is virtually unaltered. A wide variety of bandpass filters, implemented in both coplanar-waveguide and microstrip technologies, have been designed and fabricated by the authors. The characterization of these devices points out the efficiency of the proposed approach to improve filter responses with harmonic rejection levels near 40 dB in some cases. It is also important to highlight that the conventional design methodology for the filters holds. For certain configurations, the presence of the resonators slightly lowers the phase velocity at the frequencies of interest with the added advantage of some level of reduction in device dimensions.

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:53 ,  Issue: 6 )