Cart (Loading....) | Create Account
Close category search window

Binary adaptive coded pilot symbol assisted modulation over Rayleigh fading channels without feedback

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Abou-Faycal, I. ; Electr. & Comput. Eng. Dept., American Univ. of Beirut, Lebanon ; Medard, M. ; Madhow, U.

Pilot symbol assisted modulation (PSAM) is a standard approach for transceiver design for time-varying channels, with channel estimates obtained from pilot symbols being employed for coherent demodulation of the data symbols. In this paper, we show that PSAM schemes can be improved by adapting the coded modulation strategy at the sender to the quality of the channel measurement at the receiver, without requiring any channel feedback from the receiver. We consider performance in terms of achievable rate for binary signaling schemes. The transmitter employs interleaved codes, with data symbols coded according to their distance from the nearest pilot symbols. Symbols far away from pilot symbols encounter poorer channel measurements at the receiver and are therefore coded with lower rate codes, while symbols close to pilot symbols benefit from recent channel measurements and are coded with higher rate codes. The performance benefits from this approach are quantified in the context of binary signaling over time-varying Rayleigh fading channels described by a Gauss-Markov model. The spacing of the pilot symbols is optimized to maximize the mutual information between input and output in this setting. Causal and noncausal channel estimators of varying complexity and delay are considered. It is shown that, by appropriate optimization for the spacing between consecutive pilot symbols, the adaptive coding techniques proposed can improve achievable rate, without any feedback from the receiver to the sender. Moreover, channel estimation based on the two closest pilot symbols is generally close to optimal.

Published in:

Communications, IEEE Transactions on  (Volume:53 ,  Issue: 6 )

Date of Publication:

June 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.