By Topic

Analog CMOS implementation of a CNN-based locomotion controller with floating-gate devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nakada, K. ; Dept. of Electr. Eng., Hokkaido Univ., Sapporo, Japan ; Asai, T. ; Amemiya, Y.

This paper proposes an analog CMOS circuit that implements a central pattern generator (CPG) for locomotion control in a quadruped walking robot. Our circuit is based on an affine transformation of a reaction-diffusion cellular neural network (CNN), and uses differential pairs with multiple-input floating-gate (MIFG) MOS transistors to implement both the nonlinearity and summation of CNN cells. As a result, the circuit operates in voltage mode, and thus it is expected to reduce power consumption. Due to good matching accuracy of devices, the circuit generates stable rhythmic patterns for robot locomotion control. From experimental results on fabricated chip using a standard CMOS 1.5-μm process, we show that the chip yields the desired results; i.e., stable rhythmic pattern generation and low power consumption.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:52 ,  Issue: 6 )