Cart (Loading....) | Create Account
Close category search window

The development and test of a device for the reconstruction of 3-D position and orientation by means of a kinematic sensor assembly with rate gyroscopes and accelerometers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Giansanti, Daniele ; Dipt. di Tecnologie e Salute, Inst. Superiore di Sanita, Roma, Italy ; Maccioni, Giovanni ; Macellari, V.

In this paper, we propose a device for the Position and Orientation (P&O) reconstruction of human segmental locomotion tasks. It is based on three mono-axial accelerometers and three angular velocity sensors, geometrically arranged to form two orthogonal terns. The device was bench tested using step-by-step motor-based equipment. The characteristics of the six channels under bench test conditions were: crosstalk absent, non linearity <±0, 1% fs, hysteresis <0, 1% fs, accuracy 0, 3% fs, overall resolution better than 0, 04 deg/s, 2*g*10-4. The device was validated with the stereophotogrammetric body motion analyzer during the execution of three different locomotion tasks: stand-to-sit, sit-to-stand, gait-initiation. Results obtained comparing the trajectories of the two methods showed that the errors were lower than 3*10-2 m and 2 deg during a 4s of acquisition and lower than 6*10-3 m and 0.2 deg during the effective duration of a locomotory task; showing that the wearable device hereby presented permits the 3-D reconstruction of the movement of the body segment to which it is affixed for time-limited clinical applications.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:52 ,  Issue: 7 )

Date of Publication:

July 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.