By Topic

Optimal control of processing times in single-stage discrete event dynamic systems with blocking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Moon, J. ; Mechatronics Center, Samsung Electron., Soowon Kyungqi-Do, South Korea ; Wardi, Y.

This note concerns an optimal control problem in single-stage discrete event dynamic systems with finite buffers and blocking. The system is modeled as a deterministic queue, slated to process a finite sequence of jobs. Each job is characterized by its arrival time, service time, and due date, and has associated with it a cost function that penalizes short service times, buffer times, and lateness of completion times with respect to the due date. The sequencing (order) of the jobs at the server is given, and the variable parameter consists of the jobs' service times. Even though the cost function associated with each job is assumed to be convex, the aggregated cost functional is not convex. Therefore, much of the analysis focuses on a decomposition of the problem into a finite sequence of reduced-order convex programming problems which can be solved one at a time. This approach has been investigated in the past, but the present note provides an analysis under the most general and realistic assumptions considered to date.

Published in:

Automatic Control, IEEE Transactions on  (Volume:50 ,  Issue: 6 )