By Topic

Approximate inversion of the Preisach hysteresis operator with application to control of smart actuators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
R. V. Iyer ; Dept. of Math. & Stat., Texas Tech Univ., Lubbock, TX, USA ; Xiaobo Tan ; P. S. Krishnaprasad

Hysteresis poses a challenge for control of smart actuators. A fundamental approach to hysteresis control is inverse compensation. For practical implementation, it is desirable for the input function generated via inversion to have regularity properties stronger than continuity. In this paper, we consider the problem of constructing right inverses for the Preisach model for hysteresis. Under mild conditions on the density function, we show the existence and weak-star continuity of the right-inverse, when the Preisach operator is considered to act on Holder continuous functions. Next, we introduce the concept of regularization to study the properties of approximate inverse schemes for the Preisach operator. Then, we present the fixed point and closest-match algorithms for approximately inverting the Preisach operator. The convergence and continuity properties of these two numerical schemes are studied. Finally, we present the results of an open-loop trajectory tracking experiment for a magnetostrictive actuator.

Published in:

IEEE Transactions on Automatic Control  (Volume:50 ,  Issue: 6 )