By Topic

Randomized algorithms for synthesis of switching rules for multimodal systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ishii, H. ; Dept. of Inf. Phys. & Comput., Univ. of Tokyo, Japan ; Basar, T. ; Tempo, R.

In this paper, we consider the design of globally asymptotically stabilizing state-dependent switching rules for multimodal systems, first restricting attention to linear time-invariant (LTI) systems with only two states for the switch, and then generalizing the results to multimodal LTI systems and to nonlinear systems. In all cases, the systems considered do not allow the construction of a single quadratic Lyapunov function and, hence, fall in the class of problems that require multiple Lyapunov functions and thus are nonconvex. To address the challenge of nonconvexity , we introduce probabilistic algorithms, and prove their probability-one convergence under a new notion of convergence. Then, to reduce complexity, we develop modified versions of the algorithm. We also present a class of more general nonconvex problems to which this approach can be applied. The results are illustrated using two- and three-dimensional systems with multiple switch states.

Published in:

Automatic Control, IEEE Transactions on  (Volume:50 ,  Issue: 6 )