By Topic

On the performance of the electrical equalization technique in MMF links for 10-gigabit ethernet

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xia, C. ; Chair for Commun., Univ. of Kiel, Germany ; Ajgaonkar, M. ; Rosenkranz, W.

In this paper, the electrical equalization technique utilized in multimode fiber (MMF) links for 10-Gigabit Ethernet is reported. This paper presents and compares three kinds of equalizers: linear equalizer, decision feedback equalizer (DFE), and a nonlinear finite-impulse-response DFE (NL-FIR-DFE) based on the analysis of nonlinear operations of direct modulation and detection in MMF links. Computer simulations reveal that NL-FIR-DFE exhibits superior performance in comparison with normal DFE. The equalization performance for an MMF channel with bandwidth 500 MHz-km as well as 160 MHz-km is demonstrated. It is demonstrated that with direct modulation of cost-effective vertical-cavity surface-emitting laser (VCSEL) or Fabry-Perot laser, the transmission distance for installed MMF with a bandwidth of 500 MHz-km at 10 Gb/s can be extended to 300 m with an appropriate offset restricted mode launch condition by utilizing normal DFE and to more than 650 m for NL-FIR-DFE. Moreover, it is shown that the transmission distance for an MMF with a bandwidth of 160 MHz-km can reach 300 m with more than seven times bandwidth improvement by using NL-FIR-DFE.

Published in:

Lightwave Technology, Journal of  (Volume:23 ,  Issue: 6 )