Cart (Loading....) | Create Account
Close category search window

A shell model for the filament structure of Bi-2223 conductors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)

Phase development during the first few minutes of heat treatment of first generation (Bi,Pb)2Sr2Ca2Cu3Oy (Bi-2223) multifilamentary wires determines to a large extent the overall microstructure, the efficiency of primary phase development, competing secondary phase development, texture evolution, and grain-to-grain connectivity. It is shown that the filament structure of these wires can be described in terms of a shell model. The shell next to the silver sheath is comprised of well-formed Bi-2223 colonies grapho-epitaxially aligned to the silver sheath and only a few grains (average one colony) thick. Inside this shell is a less well-aligned, less phase pure, more porous Bi-2223 structure through which current is carried in a nonuniform manner as shown by MOI.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:15 ,  Issue: 2 )

Date of Publication:

June 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.