Cart (Loading....) | Create Account
Close category search window

New directions in superconducting radio frequency cavities for accelerators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Grimm, T.L. ; Nat. Supercond. Cyclotron Lab., Michigan State Univ., East Lansing, MI, USA ; Aizaz, A. ; Johnson, M. ; Hartung, W.
more authors

Superconducting radio frequency (SRF) cavities used in present-day accelerators for the acceleration of charged particles near the speed of light are based on the axially symmetric TM010 mode of a pillbox cavity. Future accelerators such as the Linear Collider require high accelerating gradients to limit the length of the linac. Two techniques to improve the gradient are being explored: a cavity that is half reentrant to improve the electromagnetic characteristics, and improved heat transfer via cooling channels and surface modification at the helium interface. These changes could potentially increase the gradients and reduce the cryogenic losses. For other applications more important criteria are simplicity, acceleration of high beam current, or the ability to use advanced materials such as Nb3Sn or high-Tc superconductors. A new type of cavity based on the TM01p pillbox mode with p>0 offers such improvements.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:15 ,  Issue: 2 )

Date of Publication:

June 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.