By Topic

An investigation of the current distribution in the triaxial cable and its operational impacts on a power system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
M. A. Young ; Univ. of Tennessee, Knoxville, TN, USA ; M. J. Gouge ; M. O. Pace ; J. A. Demko
more authors

An investigation of the current distribution in a three-phase triaxial superconducting cable is underway to study phase imbalances under steady-state operation and to assist in the construction of a transient model to study operational impacts of the cable in a power grid. The triaxial cable consists of three superconducting concentric phases inside a copper shield, with each phase composed of multiple layers of BSCCO tape wound helically in opposite directions. Current distribution among the phases of the cable is determined by using an electric circuit (EC) model containing the self and mutual inductances resulting from both axial and tangential fields. An ac loss term is also included in the model. Building on the EC model, a lumped cable model is used to investigate the effects of the triaxial cable on a power grid when faults are applied to the system. Cable lengths practical for future applications (∼10 km) are considered.

Published in:

IEEE Transactions on Applied Superconductivity  (Volume:15 ,  Issue: 2 )