By Topic

Thermal runaway of a 1 T cryocooler-cooled oxide Superconducting pulsed coil in Ac operation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Miyazaki, H. ; Graduate Sch. of Inf. Sci. & Electr. Eng., Kyushu Univ., Fukuoka, Japan ; Harada, S. ; Iwakuma, M. ; Funaki, K.
more authors

We designed and fabricated a 1 T cryocooler-cooled oxide superconducting pulsed coil with Bi2223 multifilamentary flat wires. Previously we studied temperature dependence of the thermal runaway current of the pulsed coil in dc operation. The thermal runaway current was higher than the critical current that was defined as the current where the electric field 10-4 V/m was generated on average over the whole length of the conductor. In this paper, we studied the coil temperature and the ac loss dependence of the thermal runaway current in ac operation. We operated the coil at 0.5 to 5 Hz with a sinusoidal-waveform transport current. The initial coil temperature was set between 30 and 100 K. The thermal runaway current decreased monotonically with increasing temperature in a similar way to dc operation. However, in a low temperature region, the thermal runaway current was restricted to a lower level than that in dc operation due to the ac loss. We discuss the frequency dependence of thermal runaway current in ac operation.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:15 ,  Issue: 2 )