By Topic

The mechanical and thermal design for the MICE focusing solenoid magnet system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Yang, S.Q. ; Dept. of Phys., Oxford Univ., UK ; Green, M.A. ; Barr, G. ; Bravar, U.
more authors

The focusing solenoids for MICE surround energy absorbers that are used to reduce the transverse momentum of the muon beam that is being cooled within MICE. The focusing solenoids will have a warm-bore diameter of 470 mm. Within this bore is a flask of liquid hydrogen or a room temperature beryllium absorber. The focusing solenoid consists of two coils wound with a copper matrix Nb-Ti conductor originally designed for MRI magnets. The two coils have separate leads, so that they may be operated at the same polarity or at opposite polarity. The focusing magnet is designed so that it can be cooled with a pair of 1.5 W (at 4.2 K) coolers. The MICE cooling channel has three focusing magnets with their absorbers. The three focusing magnets will be hooked together in series for a circuit stored-energy of about 9.0 MJ. Quench protection for the focusing magnets is discussed. This report presents the mechanical and thermal design parameters for this magnet, including the results of finite element calculations of mechanical forces and heat flow in the magnet cold mass.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:15 ,  Issue: 2 )