By Topic

Antenna coupled niobium bolometers for 10 μm wavelength radiation detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Hadfield, R.H. ; Nat. Inst. of Stand. & Technol., Boulder, CO, USA ; Miller, A.J. ; Nam, S.W. ; Schwall, R.E.
more authors

We report on the fabrication and testing of antenna-coupled niobium bolometers for 10 μm wavelength radiation detection. We use 20 nm thick Nb films on oxidized Si substrates. The bolometer design consists of a 1 μm×1 μm Nb microbridge embedded in either a dipole or a spiral Au antenna. We have performed dark dc tests on devices in vacuum at 4.2 K. Current biased dark measurements correspond well to established theory. This result allows us to extract an upper limit for the value of thermal conductance g (340 nWK-1)-hence an indirect measure of the device bandwidth (0.2 GHz). Measurements under incident black body radiation show that the radiation perturbs the return switching characteristics of the devices.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:15 ,  Issue: 2 )