By Topic

Identification of translational displacements between N-dimensional data sets using the high-order SVD and phase correlation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hoge, W.S. ; Dept. of Radiol., Brigham & Women''s Hosp., Boston, MA, USA ; Westin, C.-F.

This paper presents an extension of the phase correlation image alignment method to N-dimensional data sets. By the Fourier shift theorem, the motion model for translational shifts between N-dimensional images can be represented as a rank-one tensor. Through use of a high-order singular value decomposition, the phase correlation between two N-dimensional data sets can be decomposed to independently identify translational displacements along each dimension with subpixel resolution. Using three-dimensional MRI data sets, we demonstrate the effectiveness of this approach relative to other N-dimensional image registration methods.

Published in:

Image Processing, IEEE Transactions on  (Volume:14 ,  Issue: 7 )