System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

Spatiotemporal characteristics of low-frequency functional activation measured by laser speckle imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lau, W. ; Johns Hopkins Sch. of Med., Baltimore, MD, USA ; Shanbao Tong ; Thakor, N.V.

Changes in neuronal activity have been shown to be accompanied by alteration in regional cerebral blood flow . In the present study, laser speckle imaging (LSI) was employed to measure stimulus-evoked neuronal activities in rat barrel cortex. The spatiotemporal characteristics of hemodynamic response to mechanical stimuli from 1 to 3 Hz were examined. Time to peak amplitude reduced from 4.5 to 3.5 s with increasing frequencies. Spatially, the response was confined to a small circular region at the beginning and then spread out asymmetrically to the surrounding regions. The maximal area of activation ranged from 2.2 to 3.5 mm2, while the time to reach maximal area occurred between 5.5 and 6 s. Moreover, there was a high correlation between LSI and laser-Doppler flowmetry in terms of peak response magnitude and the time to reach peak. These two values were linearly dependent on stimulus frequency whereas area of activation and time to maximal area appeared to be independent of this parameter. LSI's high sensitivity, low cost of the equipment, and size and complexity make this a suitable technique for fundamental neurophysiological investigations.

Published in:

Neural Systems and Rehabilitation Engineering, IEEE Transactions on  (Volume:13 ,  Issue: 2 )