By Topic

Identifying interesting visitors through Web log classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yu, J.X. ; Chinese Univ. of Hong Kong, Shatin, China ; Yuming Ou ; Zhang, C. ; Zhang, S.

Web site owners have trouble identifying customer purchasing patterns from their Web logs because the two aren't directly related. Thus, organizations must understand their customers' behavior, preferences, and future needs. This imperative leads many companies to develop a great many e-service systems for data collection and analysis. Web mining is a popular technique for analyzing visitor activities in e-service systems. It mainly includes Web text mining, Web structure mining and Web log mining. Our Web log mining approach classifies a particular site's visitors into different groups on the basis of their purchase interest.

Published in:

Intelligent Systems, IEEE  (Volume:20 ,  Issue: 3 )