By Topic

Topology control for fault-tolerant communication in highly dynamic wireless networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
B. Thallner ; Embedded Computing Syst. Group, Technische Univ. Wien, Vienna, Austria ; H. Moser

Energy efficiency and fault-tolerance are the most important issues in the development of next-generation wireless ad hoc networks and sensor networks. Topology control as a low level service (typically below the traditional layer structure) governs communication among all nodes and is hence the primary target for increasing connectivity and saving energy. In this paper, we present an improvement of our topology control algorithm for very dynamic networks and low power devices (e.g. sensor nodes). The algorithm constructs a fault-tolerant topology for energy-efficient and fault-tolerant multi-hop communication in a two-tier network consisting of a large number of wireless nodes and a few gateway nodes (e.g. base stations responsible for exchanging data with other networks). Using only local information, like distance/channel attenuation to neighbors, our fully distributed algorithm efficiently constructs and continuously maintains a k-regular overlay graph that guarantees low total transmission power, is k-node-connected and ensures failure locality. It automatically adapts to a dynamically changing environment, is guaranteed to converge, builds a hierarchy of clusters that reflects the node density and exhibits good performance as well.

Published in:

Third International Workshop on Intelligent Solutions in Embedded Systems, 2005.

Date of Conference:

20 May 2005