By Topic

Design, fabrication, and characterization of a submicroelectromechanical resonator with monolithically integrated CMOS readout circuit

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

14 Author(s)
Verd, J. ; Dept. of Enginyeria Electronica, Univ. Autonoma de Barcelona, Bellaterra, Spain ; Abadal, G. ; Teva, J. ; Gaudo, M.V.
more authors

In this paper, we report on the main aspects of the design, fabrication, and performance of a microelectromechanical system constituted by a mechanical submicrometer scale resonator (cantilever) and the readout circuitry used for monitoring its oscillation through the detection of the capacitive current. The CMOS circuitry is monolithically integrated with the mechanical resonator by a technology that allows the combination of standard CMOS processes and novel nanofabrication methods. The integrated system constitutes an example of a submicroelectromechanical system to be used as a cantilever-based mass sensor with both a high sensitivity and a high spatial resolution (on the order of 10-18 g and 300 nm, respectively). Experimental results on the electrical characterization of the resonance curve of the cantilever through the integrated CMOS readout circuit are shown.

Published in:

Microelectromechanical Systems, Journal of  (Volume:14 ,  Issue: 3 )