By Topic

Reconfigurable millimeter-wave filters using CPW-based periodic structures with novel multiple-contact MEMS switches

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Jae-Hyoung Park ; LG Electron. Inst. of Technol., Seoul, South Korea ; Sanghyo Lee ; Jung-Mu Kim ; Hong-Teuk Kim
more authors

In this paper, fully monolithic reconfigurable millimeter-wave filters are proposed using the CPW-based periodic structures with novel multiple-contact MEMS switches. Millimeter-wave low-pass and band-pass filters were designed, fabricated, and tested. Three cascaded CPW-based periodic structures, with low-pass and band-pass intrinsic filtering characteristics, are reconfigured into a self-similar single unit cell by the operation of the novel multiple-contact MEMS switches with single actuation. By using the multiple-contact MEMS switches, the insertion loss can be reduced and the operating frequency ranges are extended to millimeter-waves with little increase of loss. Additionally, the number of the switching elements has been reduced and the bias-decoupling circuits are not required, resulting in a very small chip size. The measured results of the reconfigurable low-pass filter show the 3-dB cutoff frequency change from 67 to 28 GHz with very small change in the insertion loss from 0.32 to 0.27 dB. The center frequency of the reconfigurable band-pass filter is tuned from 55 to 20 GHz, and the measured 3-dB cutoff bandwidth changed from 32 to 12 GHz, while the average insertion loss changed from 1.27 to 1.61 dB. The chip size of the low-pass and band-pass filter including dc bias line is 1.2 mm × 1.5 mm and 1.2 mm × 4.5 mm, respectively.

Published in:

Microelectromechanical Systems, Journal of  (Volume:14 ,  Issue: 3 )