By Topic

Congestion control policies for IP-based CDMA radio access networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kasera, S.K. ; Sch. of Comput., Univ. of Utah, Salt Lake City, UT, USA ; Ramjee, R. ; Thuel, S.R. ; Xin Wang

As CDMA-based cellular networks mature, the current point-to-point links used in connecting base stations to network controllers evolve to an IP-based radio access network (RAN) for reasons of lower cost due to statistical multiplexing gains, better scalability and reliability, and the projected growth in data applications. In this paper, we study the impact of congestion in a best-effort IP RAN on CDMA cellular voice networks. We propose and evaluate three congestion control mechanisms, admission control, diversity control, and router control, to maximize network capacity while maintaining good voice quality. We first propose two new enhancements to CDMA call admission control that consider a unified view of both IP RAN and air interface resources. Next, we introduce a novel technique called diversity control that exploits the soft-handoff feature of CDMA networks and drops selected frames belonging to multiple soft-handoff legs to gracefully degrade-voice quality during congestion. Finally, we study the impact of router control where an active queue management technique is used to reduce delay and minimize correlated losses. Using simulations of a large mobile network, we show that the three different control mechanisms can help gracefully manage 10-40 percent congestion overload in the IP RAN.

Published in:

Mobile Computing, IEEE Transactions on  (Volume:4 ,  Issue: 4 )