By Topic

Dimension reduction-based penalized logistic regression for cancer classification using microarray data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Li Shen ; Sch. of Comput. Eng., Nanyang Technol. Univ., Singapore ; Eng Chong Tan

The use of penalized logistic regression for cancer classification using microarray expression data is presented. Two dimension reduction methods are respectively combined with the penalized logistic regression so that both the classification accuracy and computational speed are enhanced. Two other machine-learning methods, support vector machines and least-squares regression, have been chosen for comparison. It is shown that our methods have achieved at least equal or better results. They also have the advantage that the output probability can be explicitly given and the regression coefficients are easier to interpret. Several other aspects, such as the selection of penalty parameters and components, pertinent to the application of our methods for cancer classification are also discussed.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:2 ,  Issue: 2 )