By Topic

Optimisation of radial basis function classifiers using simulated annealing algorithm for cancer classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wang, H.-Q. ; Hefei Inst. of Intelligent Machines, Chinese Acad. of Sci., Hefei, China ; Huang, D.-S. ; Wang, B.

A modified simulated annealing algorithm is developed and combined with the linear least square and gradient descent paradigms to optimise the structure of the radial basis function classifier (RBFC). The optimised RBFC is then applied to cancer classifications and compared with previous methods, such as least square support vector machine and Fisher discriminant analysis. Experimental results show that the optimised RBFC is not only parsimonious but also has better generalisation performance.

Published in:

Electronics Letters  (Volume:41 ,  Issue: 11 )