By Topic

All-analytic surface potential model for SOI MOSFETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Y. S. Yu ; Dept. of Inf. & Control Eng., Hankyong Nat. Univ., Anseong, South Korea ; S. H. Kim ; S. W. Hwang ; D. Ahn

An all-analytic front surface potential model for SOI MOSFETs is presented, which is not only obtained from previously developed models, but is also derived from assumptions made for approximations of various operating regions. A single formula for the drain current is obtained by smoothly connecting the analytic solutions for various operating regions. The formula can be used from accumulation to strong inversion and from the partially depleted (PD) region to the fully depleted (FD) region. Owing to the one-dimensional nature of the model, the critical gate bias at which the transition occurs between the PD and FD regions can also be obtained analytically. Most secondary effects can easily be included in the current model and the model accurately reproduces numerical and experimental results. No discontinuity in the derivative of the surface potential is found and the newly introduced parameters used in the smoothing functions do not depend strongly on the process parameters.

Published in:

IEE Proceedings - Circuits, Devices and Systems  (Volume:152 ,  Issue: 2 )