Cart (Loading....) | Create Account
Close category search window
 

An inspection-maintenance model for systems with multiple competing processes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wenjian Li ; Dept. of Ind. & Syst. Eng., Rutgers Univ., Piscataway, NJ, USA ; Pham, H.

In some applications, the failure rate of the system depends not only on the time, but also upon the status of the system, such as vibration level, efficiency, number of random shocks on the system, etc., which causes degradation. In this paper, we develop a generalized condition-based maintenance model subject to multiple competing failure processes including two degradation processes, and random shocks. An average long-run maintenance cost rate function is derived based on the expressions for the degradation paths & cumulative shock damage, which are measurable. A geometric sequence is employed to develop the inter-inspection sequence. Upon inspection, one needs to decide whether to perform a maintenance, such as preventive or corrective, or to do nothing. The preventive maintenance thresholds for degradation processes & inspection sequences are the decision variables of the proposed model. We also present an algorithm based on the Nelder-Mead downhill simplex method to calculate the optimum policy that minimizes the average long-run maintenance cost rate. Numerical examples are given to illustrate the results using the optimization algorithm.

Published in:

Reliability, IEEE Transactions on  (Volume:54 ,  Issue: 2 )

Date of Publication:

June 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.