Cart (Loading....) | Create Account
Close category search window

Obstacle avoidance of a mobile robot using hybrid learning approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Meng Joo Er ; Intelligent Syst. Centre, Nanyang Technol. Univ., Singapore ; Chang Deng

in this paper, a hybrid learning approach for obstacle avoidance of a mobile robot is presented. the key features of the approach are, firstly, innate hardwired behaviors which are used to bootstrap learning in the mobile robot system. a neuro-fuzzy controller is developed from a pre-wired or innate controller based on supervised learning in a simulation environment. the fuzzy inference system has been constructed based on the generalized dynamic fuzzy neural networks learning algorithm of Wu and Er, whereby structure and parameters identification are carried out automatically and simultaneously. Secondly, the neuro-fuzzy controller is capable of re-adapting in a new environment. After carrying out the learning phase on a simulated robot, the controller is implemented on a real robot. A reinforcement learning method based on the fuzzy actor-critic learning algorithm is employed so that the system can re-adapt to a new environment without human intervention. In this phase, the structure of the fuzzy inference system and the parameters of the antecedent parts of fuzzy rules are frozen, and reinforcement learning is applied to further tune the parameters in the consequent parts of the fuzzy rules. Through the hybrid learning approach, an efficient and compact neuro-fuzzy system is generated for obstacle avoidance of a mobile robot in the real world.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:52 ,  Issue: 3 )

Date of Publication:

June 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.