By Topic

Minimizing regret with label efficient prediction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cesa-Bianchi, N. ; Dipt. di Sci. dell''Informazione, Univ. di Milano, Italy ; Lugosi, G. ; Stoltz, G.

We investigate label efficient prediction, a variant, proposed by Helmbold and Panizza, of the problem of prediction with expert advice. In this variant, the forecaster, after guessing the next element of the sequence to be predicted, does not observe its true value unless he asks for it, which he cannot do too often. We determine matching upper and lower bounds for the best possible excess prediction error, with respect to the best possible constant predictor, when the number of allowed queries is fixed. We also prove that Hannan consistency, a fundamental property in game-theoretic prediction models, can be achieved by a forecaster issuing a number of queries growing to infinity at a rate just slightly faster than logarithmic in the number of prediction rounds.

Published in:

Information Theory, IEEE Transactions on  (Volume:51 ,  Issue: 6 )