We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Correlated MIMO wireless channels: capacity, optimal signaling, and asymptotics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Veeravalli, V.V. ; Dept. of Electr. & Comput. Eng., Univ. of Illinois, Urbana, IL, USA ; Yingbin Liang ; Sayeed, A.M.

The capacity of the multiple-input multiple-output (MIMO) wireless channel with uniform linear arrays (ULAs) of antennas at the transmitter and receiver is investigated. It is assumed that the receiver knows the channel perfectly but that the transmitter knows only the channel statistics. The analysis is carried out using an equivalent virtual representation of the channel that is obtained via a spatial discrete Fourier transform. A key property of the virtual representation that is exploited is that the components of virtual channel matrix are approximately independent. With this approximation, the virtual representation allows for a general capacity analysis without the common simplifying assumptions of Gaussian statistics and product-form correlation (Kronecker model) for the channel matrix elements. A deterministic line-of-sight (LOS) component in the channel is also easily incorporated in much of the analysis. It is shown that in the virtual domain, the capacity-achieving input vector consists of independent zero-mean proper-complex Gaussian entries, whose variances can be computed numerically using standard convex programming algorithms based on the channel statistics. Furthermore, in the asymptotic regime of low signal-to-noise ratio (SNR), it is shown that beamforming along one virtual transmit angle is asymptotically optimal. Necessary and sufficient conditions for the optimality of beamforming, and the value of the corresponding optimal virtual angle, are also derived based on only the second moments of the virtual channel coefficients. Numerical results indicate that beamforming may be close to optimum even at moderate values of SNR for sparse scattering environments. Finally, the capacity is investigated in the asymptotic regime where the numbers of receive and transmit antennas go to infinity, with their ratio being kept constant. Using a result of Girko, an expression for the asymptotic capacity scaling with the number of antennas is obtained in terms

Published in:

Information Theory, IEEE Transactions on  (Volume:51 ,  Issue: 6 )