By Topic

Polynomial time algorithms for multicast network code construction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
S. Jaggi ; Dept. of Electr. Eng., California Inst. of Technol., Pasadena, CA, USA ; P. Sanders ; P. A. Chou ; M. Effros
more authors

The famous max-flow min-cut theorem states that a source node s can send information through a network (V, E) to a sink node t at a rate determined by the min-cut separating s and t. Recently, it has been shown that this rate can also be achieved for multicasting to several sinks provided that the intermediate nodes are allowed to re-encode the information they receive. We demonstrate examples of networks where the achievable rates obtained by coding at intermediate nodes are arbitrarily larger than if coding is not allowed. We give deterministic polynomial time algorithms and even faster randomized algorithms for designing linear codes for directed acyclic graphs with edges of unit capacity. We extend these algorithms to integer capacities and to codes that are tolerant to edge failures.

Published in:

IEEE Transactions on Information Theory  (Volume:51 ,  Issue: 6 )