By Topic

Range localization of 10-100 km explosions by means of an endfire array and a waveguide Invariant

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Sostrand, K.A. ; Maritime Syst. Div., Norwegian Defence Res. Establ., Horten, Norway

Short acoustical signals like those caused by explosions will in a waveguide split into mode arrivals. If the distance is long enough, they can at the receiver be resolved in time with appropriate narrowband filters. They can simultaneously be resolved in vertical angle (incidence-) with an endfire array and a beamformer. Combined in a beam-time diagram the arrivals will line up along a straight line. The slope of this line is invariant with frequency, mode indexes, source and receiver depths. It can conveniently be linked to the so-called waveguide invariant β. An alternative approach to β is to compute it from the bathymetric profile. This is valid for range variable waveguides under adiabatic conditions, constant water sound speed over a harder bottom, and small grazing angles. Together these two approaches to β can be combined in a formula, where direct range determination is the end product. The applicability of the method is demonstrated on data from an experiment at sea. An 820-m array with 10 hydrophones was deployed at the bottom in 320-m water depth. For two endfire runs in opposite directions, small explosive charges out to 115 km were used as sound sources. Typical range estimation errors were 5-10%.

Published in:

Oceanic Engineering, IEEE Journal of  (Volume:30 ,  Issue: 1 )