By Topic

Computer vision elastography: speckle adaptive motion estimation for elastography using ultrasound sequences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Revell, J. ; Dept. of Comput. Sci., Univ. of Bristol, UK ; Mirmehdi, M. ; McNally, D.

We present the development and validation of an image based speckle tracking methodology, for determining temporal two-dimensional (2-D) axial and lateral displacement and strain fields from ultrasound video streams. We refine a multiple scale region matching approach incorporating novel solutions to known speckle tracking problems. Key contributions include automatic similarity measure selection to adapt to varying speckle density, quantifying trajectory fields, and spatiotemporal elastograms. Results are validated using tissue mimicking phantoms and in vitro data, before applying them to in vivo musculoskeletal ultrasound sequences. The method presented has the potential to improve clinical knowledge of tendon pathology from carpel tunnel syndrome, inflammation from implants, sport injuries, and many others.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:24 ,  Issue: 6 )