Cart (Loading....) | Create Account
Close category search window
 

A stochastic model for studying the laminar structure of cortex from MRI

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Barta, P. ; Dept. of Biomed. Eng., Johns Hopkins Univ., Baltimore, MD, USA ; Miller, M.I. ; Anqi Qiu

The human cerebral cortex is a laminar structure about 3 mm thick, and is easily visualized with current magnetic resonance (MR) technology. The thickness of the cortex varies locally by region, and is likely to be influenced by such factors as development, disease and aging. Thus, accurate measurements of local cortical thickness are likely to be of interest to other researchers. We develop a parametric stochastic model relating the laminar structure of local regions of the cerebral cortex to MR image data. Parameters of the model include local thickness, and statistics describing white, gray and cerebrospinal fluid (CSF) image intensity values as a function of the normal distance from the center of a voxel to a local coordinate system anchored at the gray/white matter interface. Our fundamental data object, the intensity-distance histogram (IDH), is a two-dimensional (2-D) generalization of the conventional 1-D image intensity histogram, which indexes voxels not only by their intensity value, but also by their normal distance to the gray/white interface. We model the IDH empirically as a marked Poisson process with marking process a Gaussian random field model of image intensity indexed against normal distance. In this paper, we relate the parameters of the IDH model to the local geometry of the cortex. A maximum-likelihood framework estimates the parameters of the model from the data. Here, we show estimates of these parameters for 10 volumes in the posterior cingulate, and 6 volumes in the anterior and posterior banks of the central sulcus. The accuracy of the estimates is quantified via Cramer-Rao bounds. We believe that this relatively crude model can be extended in a straightforward fashion to other biologically and theoretically interesting problems such as segmentation, surface area estimation, and estimating the thickness distribution in a variety of biologically relevant contexts.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:24 ,  Issue: 6 )

Date of Publication:

June 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.