By Topic

3-D mapping of natural environments with trees by means of mobile perception

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Forsman, P. ; Autom. Technol. Lab., Helsinki Univ. of Technol., Finland ; Halme, A.

In this paper, a method of generating a three-dimensional (3-D) geometric model for large-scale natural environments with trees is presented. The environment mapping method, which uses range images as measurement data, consists of three main phases. First, geometric feature objects are extracted from each of the range images. Second, the relative coordinate transformations (i.e., registrations) between the sensor viewpoint locations, where the range data are measured, are computed. Third, an integrated map is formed by transforming the submap data into a common frame of reference. Tree trunks visible in the range images are modeled with cylinder segments and utilized as reference features for registration computation. The final integrated 3-D model consists of the cylinder segments representing the visible sections of the tree trunks, as well as of the ground elevation data. The constructed environment map can be utilized as, for example, a virtual task environment for outdoor robotic machines such as new-generation forest working machines or service robots.

Published in:

Robotics, IEEE Transactions on  (Volume:21 ,  Issue: 3 )