By Topic

Software assurance by bounded exhaustive testing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Coppit, D. ; Dept. of Comput. Sci., Coll. of William & Mary, Williamsburg, VA, USA ; Yang, J. ; Khurshid, S. ; Wei Le
more authors

Bounded exhaustive testing (BET) is a verification technique in which software is automatically tested for all valid inputs up to specified size bounds. A particularly interesting case of BET arises in the context of systems that take structurally complex inputs. Early research suggests that the BET approach can reveal faults in small systems with inputs of low structural complexity, but its potential utility for larger systems with more complex input structures remains unclear. We set out to test its utility on one such system. We used Alloy and TestEra to generate inputs to test the Galileo dynamic fault tree analysis tool, for which we already had both a formal specification of the input space and a test oracle. An initial attempt to generate inputs using a straightforward translation of our specification to Alloy did not work well. The generator failed to generate inputs to meaningful bounds. We developed an approach in which we factored the specification, used TestEra to generate abstract inputs based on one factor, and passed the results through a postprocessor that reincorporated information from the second factor. Using this technique, we were able to generate test inputs to meaningful bounds, and the inputs revealed nontrivial faults in the Galileo implementation, our specification, and our oracle. Our results suggest that BET, combined with specification abstraction and factoring techniques, could become a valuable addition to our verification toolkit and that further investigation is warranted.

Published in:

Software Engineering, IEEE Transactions on  (Volume:31 ,  Issue: 4 )