Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Intelligent energy management agent for a parallel hybrid vehicle-part I: system architecture and design of the driving situation identification process

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Langari, R. ; Dept. of Mech. Eng., Texas A&M Univ., College Station, TX, USA ; Jong-Seob Won

This two part paper proposes an intelligent energy management agent (IEMA) for parallel hybrid vehicles. IEMA incorporates a driving situation identification component whose role is to assess the driving environment, the driving style of the driver and the operating mode of the vehicle using long and short term statistical features of the drive cycle. This information is subsequently used by the torque distribution and charge sustenance components of IEMA to determine the power split strategy, which is shown to lead to enhanced fuel economy and reduced emissions. In Part I, the overall architecture of IEMA is presented and the driving situation identification process is described. It is specifically shown that a learning vector quantization (LVQ) network can effectively determine the driving condition using a limited duration of driving data. The overall performance of the system under a range of drive cycles is discussed in the second part of this paper.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:54 ,  Issue: 3 )