Cart (Loading....) | Create Account
Close category search window

Evaluation of motor characteristics for hybrid electric vehicles using the hardware-in-the-loop concept

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Sung Chul Oh ; Sch. of Inf. Technol., Korea Univ. of Technol. & Educ., Chungnam, South Korea

If the concept of Hardware-in-the-Loop (HIL) is applied to component testing, characteristic of component of hybrid electric vehicle in real vehicle environment can be evaluated without actually installing that component in real vehicle. In this paper, when commercially available test motor is adopted as a drivetrain of hybrid vehicle, we need to figure out which drive train configuration would be best for specific purpose. The characteristic of the motor when it is installed in the vehicle at different drive train and driving mode can be simulated and actual characteristic can be measured. Also both results can be compared. For the hardware characteristic measurement, test facility which consists of vehicle simulator and dynamometer is required. In this case, vehicle controller in the vehicle simulator is used as a vehicle controller and dynamometer is used to simulate vehicle dynamics. Two drive train types, 4-motor series, and 2-motor parallel type are proposed. Vehicle speed tracks driving cycle speed command well in both simulation and HIL implementation.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:54 ,  Issue: 3 )

Date of Publication:

May 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.