By Topic

A physically based compact gate C-V model for ultrathin (EOT ∼1 nm and below) gate dielectric MOS devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Fei Li ; Nassda Corp., Santa Clara, CA, USA ; S. Mudanai ; L. F. Register ; S. K. Banerjee

A computationally efficient and accurate physically based gate capacitance model of MOS devices with advanced ultrathin equivalent oxide thickness (EOT) oxides (down to 0.5 nm explicitly considered here) is introduced for the current and near future integrated circuit technology nodes. In such a thin gate dielectric regime, the modeling of quantum-mechanical (QM) effects simply with the assumption of an infinite triangular quantum well at the Si-dielectric interface can result in unacceptable underestimates of calculated gate capacitance. With the aid of self-consistent numerical Schrödinger-Poisson calculations, the QM effects have been reconsidered in this model. The 2/3 power law for the lowest quantized energy level versus field relations (E1∝Fox23/), often used in compact models, was refined to 0.61 for electrons and 0.64 for holes, respectively, in the substrate in the regimes of moderate to strong inversion and accumulation to address primarily barrier penetration. The filling of excited states consistent with Fermi statistics has been addressed. The quantum-corrected gate capacitance-voltage (C-V) calculations have then been tied directly to the Fermi level shift as per the definition of voltage (rather than, for example, obtained indirectly through calculation of quantum corrections to the charge centroids offset from the interface). The model was implemented and tested by comparisons to both numerical calculations down to 0.5 nm, and to experimental data from n-MOS or p-MOS metal-gate devices with SiO2, Si3N4 and high-κ (e.g., HfO2) gate dielectrics on (100) Si with EOTs down to ∼1.3 nm. The compact model has also been adapted to address interface states, and poly depletion and poly accumulation effects on gate capacitance.

Published in:

IEEE Transactions on Electron Devices  (Volume:52 ,  Issue: 6 )