Cart (Loading....) | Create Account
Close category search window
 

Improved determination of Q-factor and resonant frequency by a quadratic curve-fitting method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Robinson, M.P. ; Phys. Layer Group, Univ. of York, UK ; Clegg, J.

The Q-factor and peak frequency of resonant phenomena give useful information about the propagation and storage of energy in an electronic system and therefore its electromagnetic compatibility performance. However, the calculation of Q by linear interpolation of a discrete frequency response to obtain the half-power bandwidth can give inaccurate results, particularly if the data are noisy or the frequency resolution is low. We describe a more accurate method that makes use of the Lorentzian shape of the resonant peaks and involves fitting a second-order polynomial to the reciprocal power plotted against angular frequency. We demonstrate that this new method requires less than one quarter the number of frequency points as the linear method to give comparable accuracy in Q. The new method also gives comparable accuracy for signal-to-noise ratios that are approximately 8 dB greater. It is also more accurate for determination of peak frequency. Examples are given both from measured frequency responses and from simulated data obtained by the transmission line matrix method.

Published in:

Electromagnetic Compatibility, IEEE Transactions on  (Volume:47 ,  Issue: 2 )

Date of Publication:

May 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.