Cart (Loading....) | Create Account
Close category search window
 

A novel hybrid heat sink using phase change materials for transient thermal management of electronics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Krishnan, S. ; Cooling Technol. Res. Center, Purdue Univ., West Lafayette, IN, USA ; Garimella, Suresh V. ; Kang, S.S.

A hybrid heat sink concept which combines passive and active cooling approaches is proposed. The hybrid heat sink is essentially a plate fin heat sink with the tip immersed in a phase change material (PCM). The exposed area of the fins dissipates heat during periods when high convective cooling is available. When the air cooling is reduced, the heat is absorbed by the PCM. The governing conservation equations are solved using a finite-volume method on orthogonal, rectangular grids. An enthalpy method is used for modeling the melting/re-solidification phenomena. Results from the analysis elucidate the thermal performance of these hybrid heat sinks. The improved performance of the hybrid heat sink compared to a finned heat sink (without a PCM) under identical conditions, is quantified. In order to reduce the computational time and aid in preliminary design, a one-dimensional fin equation is formulated which accounts for the simultaneous convective heat transfer from the finned surface and melting of the PCM at the tip. The influence of the location, amount, and type of PCM, as well as the fin thickness on the thermal performance of the hybrid heat sink is investigated. Simple guidelines are developed for preliminary design of these heat sinks.

Published in:

Components and Packaging Technologies, IEEE Transactions on  (Volume:28 ,  Issue: 2 )

Date of Publication:

June 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.