Cart (Loading....) | Create Account
Close category search window
 

Fluid flow and heat transfer in liquid cooled foam heat sinks for electronic packages

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Zhang, H.Y. ; Inst. of Microelectron., Singapore ; Pinjala, D. ; Joshi, Y.K. ; Wong, T.N.
more authors

In this paper, the fluid flow and heat transfer of liquid cooled foam heat sinks (FHSs) were experimentally investigated. Eight Open-celled copper foam materials with two pore densities of 60 and 100 PPI (pores per inch) and four porosities varying from 0.6 to 0.9 were bonded onto copper base plates to form the FHSs, which were then assembled on flip chip BGA packages (FBGAs) with a common thermal grease as the thermal interface material. A liquid cooling test loop was established to obtain the pressure drops and overall thermal resistances. For the four 60 PPI FHSs, the one with the lowest porosity of 0.6 is found to possess the lowest thermal resistance level with the largest pressure drop. Generally the FHSs with 100 PPI had slightly lower thermal resistances at the same flowrates but much larger pressure drops than those with 60 PPI. In the overall performance assessment, the thermal resistances of the FHSs are plotted against the pressure drop and the pump power, together with a microchannel heat sink of similar unit cell scale and structural dimensions. The thermal resistances of the FHS with a porosity of 0.8 and pore density of 60 PPI were identified to be the lowest among all the FHSs, which outperformed the microchannel heat sink at large pressure drop and pump power. The reduced heat sink thermal resistance and Nusselt numbers for the present FHSs and microchannel heat sink are also presented and compared with the FHS reported in the literature.

Published in:

Components and Packaging Technologies, IEEE Transactions on  (Volume:28 ,  Issue: 2 )

Date of Publication:

June 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.