By Topic

Single-phase operation of a three-phase induction generator using a novel line current injection method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chan, T.F. ; Dept. of Electr. Eng., Hong Kong Polytech. Univ., China ; Lai, L.L.

By using two capacitances and a current injection transformer, a three-phase induction generator can operate with good phase balance and line power factor while delivering power to a single-phase power grid. This paper presents a systematic analysis on this novel induction generator configuration. The solution of the system's inspection equations using the method of symmetrical components enables the steady-state generator performance at any speed to be computed. The conditions for achieving perfect phase balance are deduced from the phasor diagram. It is shown that the capacitances that result in perfect phase balance depend on the generator admittance, power factor angle, as well as the turns-ratio of the current injection transformer. Where possible, the computed results are verified by experiments conducted on a 2-kW induction machine. An experimental investigation on the system waveforms and harmonics is also carried out.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:20 ,  Issue: 2 )