By Topic

Application of genetic algorithm with a novel adaptive scheme for the identification of induction machine parameters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Abdelhadi, B. ; Dept. of Electr. Eng., Univ. of Batna, Algeria ; Benoudjit, A. ; Nait-Said, N.

This work presents a powerful application of genetic algorithm (GA) for the identification of Park's model electric parameters of an induction machine. Such a model is used in control techniques for variable speed drives. GA is considered as the most recent product of the artificial intelligence techniques. By its evolutionary character, it solves efficient electrical engineering problems despite its relative slowness in its standard form. Such shortcoming has been dealt with by incorporating a novel adaptive scheme. The suggested adaptive GA aims at accurately solving a nonlinear fitting optimization problem within a reduced computing time. The yielded solution of parameters produces, according to the machine model, the closest possible curves to those of the references. Finally, for the purpose of validation, the obtained machine performances of the adaptive GA method are compared with both those of references and those of a near-least-square-error estimator using experimental variable load measurements.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:20 ,  Issue: 2 )