By Topic

Grammatical inference in bioinformatics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Sakakibara, Y. ; Dept. of Biosciences & Informatics, Keio Univ., Yokohama, Japan

Bioinformatics is an active research area aimed at developing intelligent systems for analyses of molecular biology. Many methods based on formal language theory, statistical theory, and learning theory have been developed for modeling and analyzing biological sequences such as DNA, RNA, and proteins. Especially, grammatical inference methods are expected to find some grammatical structures hidden in biological sequences. In this article, we give an overview of a series of our grammatical approaches to biological sequence analyses and related researches and focus on learning stochastic grammars from biological sequences and predicting their functions based on learned stochastic grammars.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:27 ,  Issue: 7 )