By Topic

Automatic sign language analysis: a survey and the future beyond lexical meaning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ong, S.C.W. ; Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore ; Ranganath, S.

Research in automatic analysis of sign language has largely focused on recognizing the lexical (or citation) form of sign gestures, as they appear in continuous signing, and developing algorithms that scale well to large vocabularies. However, successful recognition of lexical signs is not sufficient for a full understanding of sign language communication. Nonmanual signals and grammatical processes, which result in systematic variations in sign appearance, are integral aspects of this communication but have received comparatively little attention in the literature. In this survey, we examine data acquisition, feature extraction and classification methods employed for the analysis of sign language gestures. These are discussed with respect to issues such as modeling transitions between signs in continuous signing, modeling inflectional processes, signer independence, and adaptation. We further examine works that attempt to analyze nonmanual signals and discuss issues related to integrating these with (hand) sign gestures. We also discuss the overall progress toward a true test of sign recognition systems -dealing with natural signing by native signers. We suggest some future directions for this research and also point to contributions it can make to other fields of research. Web-based supplemental materials (appendices), which contain several illustrative examples and videos of signing, can be found at www.computer.org/publications/dlib.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:27 ,  Issue: 6 )