By Topic

Domain-driven data synopses for dynamic quantiles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Gilbert, A.C. ; Dept. of Math., Michigan Univ., Ann Arbor, MI, USA ; Kotidis, Y. ; Muthukrishnan, S. ; Strauss, M.J.

In this paper, we present new algorithms for dynamically computing quantiles of a relation subject to insert as well as delete operations. At the core of our algorithms lies a small-space multiresolution representation of the underlying data distribution based on random subset sums or RSSs. These RSSs are updated with every insert and delete operation. When quantiles are demanded, we use these RSSs to estimate quickly, without having to access the data, all the quantiles, each guaranteed to be accurate to within user-specified precision. While quantiles have found many uses in databases, in this paper, our focus is primarily on network management applications that monitor the distribution of active sessions in the network. Our examples are drawn both from the telephony and the IP network, where the goal is to monitor the distribution of the length of active calls and IP flows, respectively, over time. For such applications, we propose a new type of histogram that uses RSSs for summarizing the dynamic parts of the distributions while other parts with small volume of sessions are approximated using simple counters.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:17 ,  Issue: 7 )