By Topic

Minimum spanning tree partitioning algorithm for microaggregation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Laszlo, M. ; Graduate Sch. of Comput. & Inf. Sci., Nova Southeastern Univ., Fort Lauderdale, FL, USA ; Mukherjee, S.

This paper presents a clustering algorithm for partitioning a minimum spanning tree with a constraint on minimum group size. The problem is motivated by microaggregation, a disclosure limitation technique in which similar records are aggregated into groups containing a minimum of k records. Heuristic clustering methods are needed since the minimum information loss microaggregation problem is NP-hard. Our MST partitioning algorithm for microaggregation is sufficiently efficient to be practical for large data sets and yields results that are comparable to the best available heuristic methods for microaggregation. For data that contain pronounced clustering effects, our method results in significantly lower information loss. Our algorithm is general enough to accommodate different measures of information loss and can be used for other clustering applications that have a constraint on minimum group size.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:17 ,  Issue: 7 )