Cart (Loading....) | Create Account
Close category search window
 

ADMiRe: an algebraic data mining approach to system performance analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ning Jiang ; Sch. of Comput. Sci., Univ. of Central Florida, Orlando, FL, USA ; Villafane, R. ; Hua, K.A. ; Sawant, A.
more authors

Performance analysis of computing systems is an increasingly difficult task due to growing system complexity. Traditional tools rely on ad hoc procedures. With these, determining which of the manifold system and workload parameters to examine is often a lengthy and highly speculative process. The analysis is often incomplete and, therefore, prone to revealing faulty conclusions and not uncovering useful tuning knowledge. We address this problem by introducing a data mining approach called ADMiRe (analyzer for data mining results). In this scheme, regression analysis is first applied to performance data to discover correlations between various system and workload parameters. The results of this analysis are summarized in sets of regression rules. The user can then formulate intuitive algebraic expressions to manipulate these sets of rules to capture critical information. To demonstrate this approach, we use ADMiRe to analyze an Oracle database system running the TPC-C (Transaction Processing Performance Council) benchmark. The results generated by ADMiRe were confirmed by Oracle experts. We also show that by applying ADMiRe to Microsoft Internet Information Server performance data, we can improve system performance by 20 percent.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:17 ,  Issue: 7 )

Date of Publication:

July 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.