By Topic

An insight-based methodology for evaluating bioinformatics visualizations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
P. Saraiya ; Dept. of Comput. Sci., Virginia Tech., Blacksburg, VA, USA ; C. North ; K. Duca

High-throughput experiments, such as gene expression microarrays in the life sciences, result in very large data sets. In response, a wide variety of visualization tools have been created to facilitate data analysis. A primary purpose of these tools is to provide biologically relevant insight into the data. Typically, visualizations are evaluated in controlled studies that measure user performance on predetermined tasks or using heuristics and expert reviews. To evaluate and rank bioinformatics visualizations based on real-world data analysis scenarios, we developed a more relevant evaluation method that focuses on data insight. This paper presents several characteristics of insight that enabled us to recognize and quantify it in open-ended user tests. Using these characteristics, we evaluated five microarray visualization tools on the amount and types of insight they provide and the time it takes to acquire it. The results of the study guide biologists in selecting a visualization tool based on the type of their microarray data, visualization designers on the key role of user interaction techniques, and evaluators on a new approach for evaluating the effectiveness of visualizations for providing insight. Though we used the method to analyze bioinformatics visualizations, it can be applied to other domains.

Published in:

IEEE Transactions on Visualization and Computer Graphics  (Volume:11 ,  Issue: 4 )