By Topic

Knowledge precepts for design and evaluation of information visualizations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Amar, R.A. ; Coll. of Comput., Georgia Inst. of Technol., Atlanta, GA, USA ; Stasko, J.T.

The design and evaluation of most current information visualization systems descend from an emphasis on a user's ability to "unpack" the representations of data of interest and operate on them independently. Too often, successful decision-making and analysis are more a matter of serendipity and user experience than of intentional design and specific support for such tasks; although humans have considerable abilities in analyzing relationships from data, the utility of visualizations remains relatively variable across users, data sets, and domains. In this paper, we discuss the notion of analytic gaps, which represent obstacles faced by visualizations in facilitating higher-level analytic tasks, such as decision-making and learning. We discuss support for bridging these gaps, propose a framework for the design and evaluation of information visualization systems, and demonstrate its use.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:11 ,  Issue: 4 )